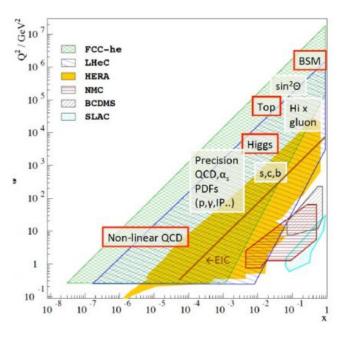

Highlights of Activities: EF05

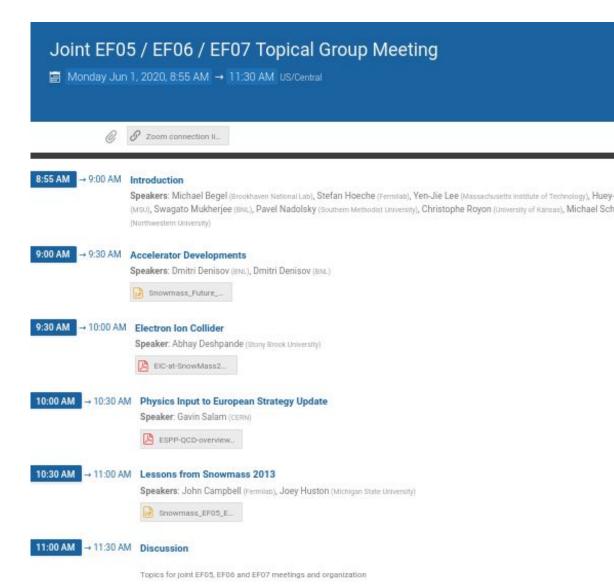
Michael Begel Stefan Hoeche Michael Schmitt


Topics covered by the group

- Strong Coupling
- Precision tests of the Standard Model
- Parton Distributions [With EF06]
- Overlap between HL-LHC and EIC [With EF06/EF07]
- Perturbative calculations Fixed order & Resummation
- Simulation and MC event generators
- Non-perturbative aspects
- Jet substructure

Joint Kickoff Meeting on QCD at the Energy Frontier

EF05 (pQCD) / EF06 (PDF) / EF07 (HI) meeting on June 1


- https://indico.fnal.gov/event/43488/
- well attended by all three communities

Four excellent summary talks

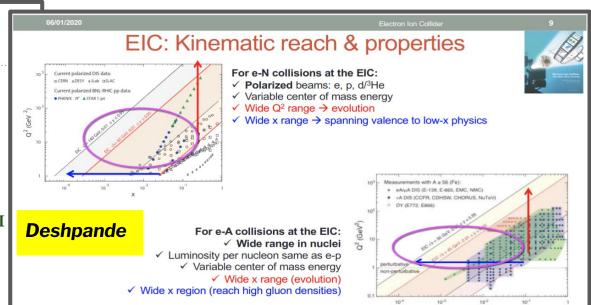
- Dimitri Denisov on Accelerator Developments
- Abhay Deshpande on Electron-Ion Collider
- Gavin Salam on European Strategy Update
- Joey Huston on Snowmass 2013

This was an excellent combined forum with the three QCD task groups

- Inspiring discussions on physics connections between LHC and EIC
- Discussions on forward and diffractive physics

QCD theory anticipated / needed for full exploitation of HL-LHC

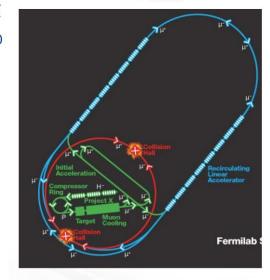
(2) General purpose Monte Carlo event-generator tools


- ➤ Perturbative improvements for Matching and Merging (e.g. generalisation of approaches for parton shower + NNLO merging,)
- ➤ Understanding & exploiting relation between parton-shower algorithms and resummation
- ➤ Phenomenological Models (hadronisation, underlying event, **also connects with HI** physics, neutrino programmes, low energy QCD, various "beyond colliders" experiments, cosmic-ray physics)

Salam

Question 1c

- Survey of the importance of EWK corrections. Do we need an EWK wishlist similar to the now-defunct NLO QCD one
- Where are combined QCD-EWK corrections important?
- EWK corrections important for many of the kinematic regions at the LHC, both current and to be expected with 4000 fb⁻¹
 - it's what Kalanand Mishra in 2013 called "the Sudakov Zone"
- Even more so for 33 or 100 TeV
- QCD and EWK corrections can be of equal importance
- See later discussion of Les Houches wishlist


Huston

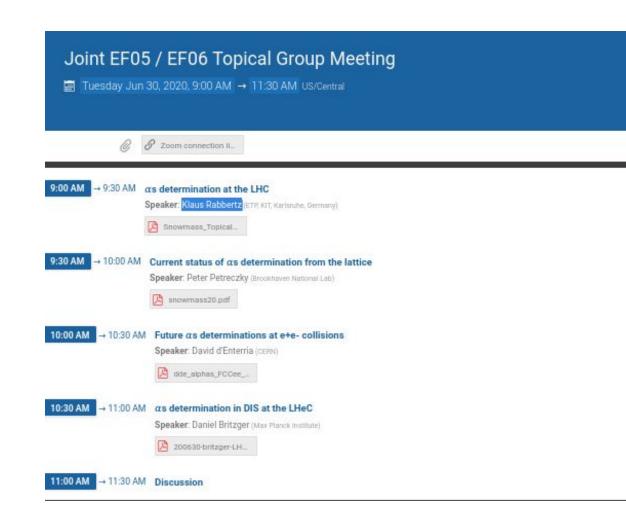
μ[±]μ⁻ Colliders

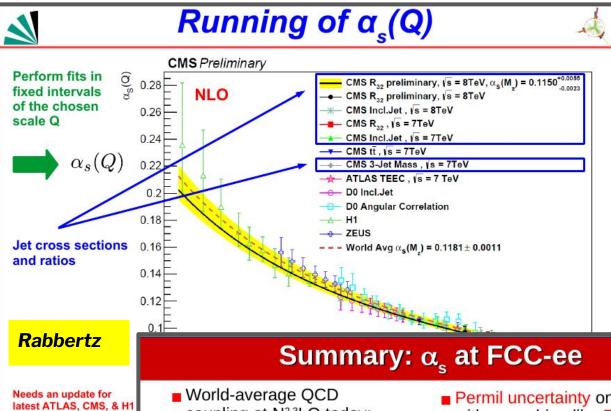
Denisov

- Muons are "heavy electrons", they have low synchrotron radiation making circular accelerators viable for multi TeV energies
 - γ factor at the same energy is ~200 times less than for electrons
- Muons are unstable with life-time of 2.2 micro seconds
 - Decay to an electron and a pair of neutrinos
- Main accelerator challenge
 - To make large number of muons quickly and then "cool" them to focus into small diameter beam to collide
- Another issue are decays and irradiation by electrons from muon decays
 - · And neutrinos irradiation!

2x2 TeV

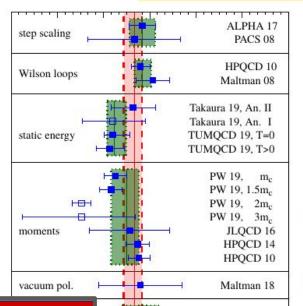
1


BROOKHAVEN


Focus questions

- 1. What is the ultimate precision for α_s and how do we achieve it? LHC, future pp/e+e-/DIS (ep and eA), particle decays (τ , hadrons), lattice
- 2. What theoretical developments are needed to support precision measurements of Higgs and top quark production and properties? including electroweak corrections, threshold effects, non-perturbative, ...
- 3. **Evaluation and interplay of uncertainties from theory and experiment** fixed-order/resummation scales, non-perturbative effects, etc.
- 4. Can we better quantify non-perturbative uncertainties? in cross-cutting effort between experiments, MC community & lattice QCD
- 5. How to include more higher-order QCD in MC event generators? Fixed-order and parton shower development (incl EW emissions, color flow, multi-parton interactions, rescattering, scale choices, ...)
- 6. **[Together with EF06] What is the future of PDF determination?** From the LHC, DIS, theoretical developments (NNLO, photon, pion, ...)

Discussions on $\alpha_{_{\rm S}}$


- Joint EF05 (pQCD) / EF06 (PDF) meeting on June 30
 - https://indico.fnal.gov/event/43490/
 - well attended by both communities
- Four excellent summary talks
 - \circ Klaus Rabbertz on α_{s} determination at the LHC
 - \circ Peter Petreczky on α_{ς} from the lattice
 - David d'Enterria on α_s in e^+e^- collisions
 - o Daniel Britzger on α_s in DIS at the LHeC
- Much discussion on improvements at existing and future machines
 - Requirements on theory progress
 - Hadronization uncertainties
 - New projections for LHeC

Summary of α_s from the lattice

Petreczky

Form pre-averages for each of the quantities and estimate the errors to account the spread in the determinations from different lattice groups. Averaging over pre-averages gives:

$$\alpha_s(M_Z) = 0.11803^{+0.00047}_{-0.00068}, \ \frac{\chi^2}{df} = \frac{6.5}{6}$$

w/o static pot.:

$$\alpha_s(M_Z) = 0.11838^{+0.00044}_{-0.00048}, \quad \frac{\chi^2}{df} = \frac{2.8}{5}$$

w/o Dirac eig. :

$$\alpha_s(M_Z) = 0.11802^{+0.00046}_{-0.00069}, \quad \frac{\chi^2}{df} = \frac{4.8}{5}$$

w/o step sclaing:

 $\alpha(M_Z) = 0.11791^{+0.00054}$

- coupling at N^{2,3}LO today:
- Determined from 7 observables with combined 0.85% uncertainty (least well-known gauge coupling).
- Impacts all LHC QCD x-sections & decays.
- Role beyond SM: GUT, EWK vacuum stability, New colored sectors?
- e⁺e⁻ extractions:

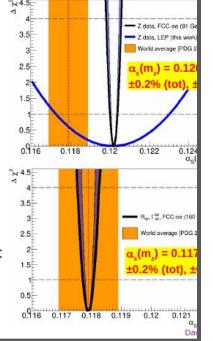
Klaus Rabber

- Hadronic tau decays: ±1% TH
- Event shapes, jet rates: ±1% TH
- Z&W pseudo-observ.: ±0.1% TH

State-of-the-art extractions:

 Z boson: New fit with high-order EW corrections + updated LEP data:

~2.306 (ovn.) uncertainty today.


d'Enterria

QCD Snowmass Meetg, June 2020

ew N^3LO fit to Γ_w , R_w uncertainty today.

20/20

Permil uncertainty only p with a machine like FCC

Summary of α_{ϵ} at LHeC

Britzger

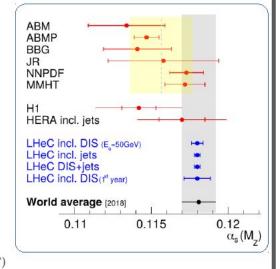
LHeC is an ideal QCD laboratory

 LHeC connects low-scale to Z-pole and beyond with high experimental precision

ETM 13

Zafeiropoulos 19

Inclusive NC/DIS


→ 'indirect' determination from QCD dynamics $\Delta \alpha_{\rm s}(M_{\rm Z})$ (incl. DIS) = $\pm 0.00022_{\rm (exp+PDF)}$

Inclusive jet cross sections

 $\rightarrow \alpha_s$ from direct measurement of a QCD-jet $\Delta \alpha_{\rm s}(M_{\rm Z})({\rm jets}) = \pm 0.00013_{\rm (exp)} \pm 0.00010_{\rm (PDF)}$

Taking jet data and inclusive DIS data

 $\Delta \alpha_{\rm s}(M_{\rm Z})$ (incl. DIS & jets) = $\pm 0.00018_{\rm (exp+PDF)}$

 \rightarrow pQCD theory may be the limiting factor for ultimate precision for α_s

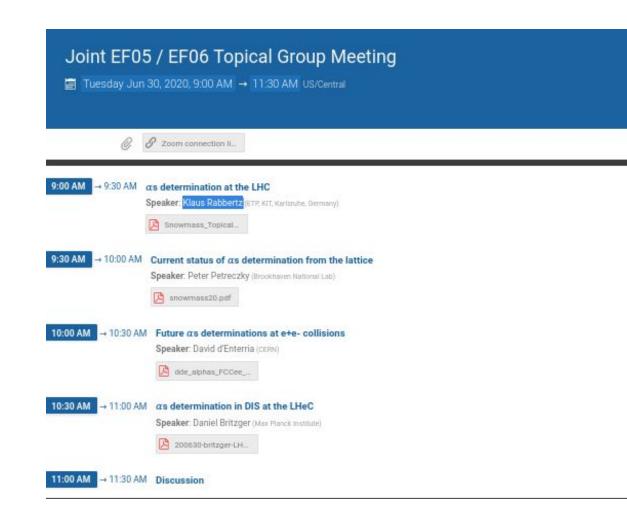
Snowmass2020 OCD

D. Britzger- α with LHeC

20

Discussions on perturbative uncertainties in MC simulations

EF05 (pQCD) meeting on July 17

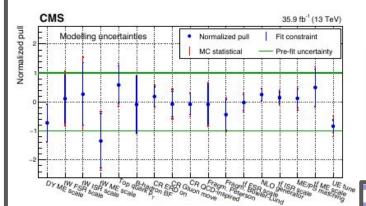

- https://indico.fnal.gov/event/44315/
- attended by many experts

Three excellent summary talks

- Simone Amoroso on ATLAS perspective
- Saptaparna Bhattacharya on CMS perspective
- Marek Schönherr on theory perspective

Stimulating discussion on proper uncertainty estimates

- Interpretation of scale uncertainties
- Scale uncertainties in parton showers
- Uncertainties in matching/merging procedures
- Question on identified particle production

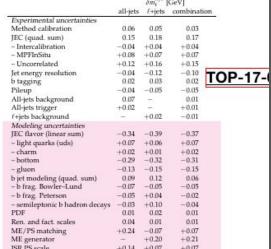


Relative contribution of the uncertainties

CMS

Bhattacharya

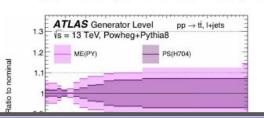
Simultaneous measurement of the top quark mass (m_t) and cross section (σ_{tt}) in dilepton top events


TOP-17-001

Does not show the effect of variation of the top pt directly; shows the uncertainty in the unfolding

Snowmass EF05 Precision QCD Meeting

22


Measurement of the top mass in all-jets final state and combination with lepton+jets channel

RESUMMATION (SHOWER)

Amoroso

- Parton shower perturbative uncertainties are often a dominant source of uncertainty
 - For top and DY precision measurements we still rely on NLO+PS samples for an accurate description of inclusive quantities and uncertainties in the resummation region are (large and) important
 - NLO-merged samples often do not provide a good description of inclusive quantities (can this be fixed?) hence cannot/are not used

Schönherr

... and how to estimate them

Parametric uncertainties

 assess through variation of input parameters within limits given by existing data

Perturbative uncertainties

- use that full result must be independent of scale choices:
 renormalisation & factorisation scales
 resummation scales / profile scales / ...
 - → can always only capture scale-dependent terms, never scale-independent ones

Algorithmic uncertainties

- · implement different algorithms
 - ightarrow always a discrete variation
 - → tricky as algorithm development takes up the majority of the time


Modelling uncertainties

• if we knew how physics works in this regime ...

Marek Schönherr

Uncertainties in Monte-Carlo Event Generation

4/17

7

Upcoming: Mini-workshop on non-perturbative uncertainties

- EF05 (pQCD) will hold two meetings, Aug 3 & 4, 9am-12pm CDT
 - https://indico.fnal.gov/event/44316/
- We will have talks by experts on experiment, theory and MC simulation
 - Torbjörn Sjöstrand String Fragmentation
 - Frank Krauss Cluster Fragmentation
 - Luigi del Debbio Lattice perspective
 - Peter Loch ATLAS/CMS perspective
 - Florian Bernlochner Belle II perspective
 - 0 ...
- We're looking forward to seeing you at the meeting, and to interesting and stimulating discussions

Thank you for participating in the EF05 activities!

Please send us suggestions for study or meeting topics, comments, expressions of interest, LOIs, ...

michael.begel@cern.ch
shoeche@fnal.gov
m-schmitt@northwestern.edu